Effects of Diesel Particle Filters on Heavy-Duty Diesel Truck Emissions at the Port of Oakland

Chelsea Preble, Timothy Dallmann, Steven DeMartini, Nathan Kreisberg, Susanne Hering, Robert Harley, Thomas Kirchstetter

AAAR, 04 Oct 2013

Acknowledgements

- Bay Area Air Quality Management District
- California Air Resources Board

Controlling diesel PM emissions

- Diesel Particle Filters (DPFs):
 - PM control for heavy-duty diesel trucks
 - Installed downstream of engine
 - Trap and oxidize PM

Effects of diesel particle filters (DPFs)

- Intended effects: reduce PM
- Possible side effects:
 - Increased NO₂ emissions and NO₂/NO_x ratio
 - Changes to ultrafine particle (UFP) emissions

Controlling diesel PM emissions

- Required on new diesel engines since 2007
 - Catalyst loading unregulated for new engines
- Available as retrofit for 1994-2006 engines
- Not available for older engines

Controlling truck emissions in CA

- Drayage Truck Rule
 - Targeted Port trucks before subsequent rule for statewide truck fleet
 - Retrofit and replacement program forcing accelerated PM and NO_x emissions reductions

Deadline	Engine Model Year	Requirement	
Jan 2010	1993 & Older	Banned	
	1994 - 2003		
Jan 2012	2004	Retrofit/Replace	
Jan 2013	2005 - 2006		

Port of Oakland study

- Aim: understand how new control technologies change truck emissions
- Measurements: before rule, during rule phase in, and after all trucks required to have DPFs
 - Nov 2009 (before)
 - Nov 2011 (during)
 - Mar 2013 (after)

Port of Oakland study

- Instrumented mobile lab near Port entrance
 - Sampled exhaust plumes of passing trucks
 - Linked emissions from individual trucks to engine age and retrofit status via license plates

1-2 Hz measurements of truck exhaust

Pollutant	Instrument	
CO ₂	NDIR analyzers	
NO, NO _X	Chemiluminescence	
PM _{2.5}	DustTrak	
Black Carbon (BC)	Aethalometer, Photoacoustic absorption	
Ultrafine particles (UFP)	Condensation particle counters	
Particle size distribution	Fast mobility particle sizer	

Plume capture method

- Sample line aligned with exhaust from trucks passing below for improved plume capture
- 1-2 Hz measurements catch rise and fall of pollutant peaks for each truck

Plume capture method

Evolving Port fleet age distribution

Evolving Port fleet age distribution

Evolving Port fleet age distribution

2011 truck age distribution by status

2013 truck age distribution by status

BC and UFP emissions

^{*}Average emission factor \pm 95% confidence interval

 On average, trucks without PM control emit ~4 times more BC and ~1.5 times more UFP than DPF-equipped trucks

BC and UFP emissions anti-correlated

Comparing NO_x & NO₂/NO_x emissions

^{*}Average emission factor \pm 95% confidence interval

On average, the NO₂/NO_x emission ratio is 4.5 times greater for older retrofit trucks and 7.6 times greater for newer DPF-equipped trucks than trucks without PM control

Comparing NO_x & NO₂/NO_x emissions

^{*}Average emission factor \pm 95% confidence interval

 On average, trucks without PM control emit 13% of the NO₂ emitted by older retrofits and 20% of the NO₂ emitted by newer DPFequipped trucks

20

Emissions are skewed

Conclusions

- On average, trucks with <u>DPFs</u>
 - Emit 1/4 of the BC and 3/5 of the UFP emitted by trucks without PM control
 - Have much higher NO₂ emissions & NO₂/NO_x emission ratio
 - New EPA 1-hr air quality standard for NO₂ and near-road NO₂ monitoring requirement
- Further cleanup strategies would be most effective if targeting dirtiest 10% of fleet